填空题(2022年天津市

若一次函数y=x+b(b是常数)的图像经过第一、二、三象限,则b的值可以是______(写出一个即可).

答案解析

1(答案不唯一,满足b>0即可)

【解析】

易知,y=x+b是递增的一次函数,

当x∈(-∞,+∞)时,函数图像必经一、三象限,

当b=0时,函数图像过原点,不经二、四象限,

当b<0时,函数图像下移,经第四象限,

当b>0时,函数图像上移,经第二象限.

讨论

已知点A(,m),B(3/2,n)在一次函数y=2x+1的图像上,则m与n的大小关系是【 】

甲、乙两人沿同一直道从A地去B地,甲比乙早1min出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离y1(单位:m)与时间x(单位:min)之间的函数关系如图所示.(1)在图中画出乙离A地的距离y2(单位:m)与时间x之间的函数图;(2)若甲比乙晚5min到达B地,求甲整个行程所用的时间.

某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成下图中的射线l1,射线l2分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资y1(单位:元)和y2(单位:元)与其当月鲜花销售量x(单位:千克)( x≥0)的函数关系. (1)分别求y1,y2与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元,这个公司采用了哪种方案给这名销售人员付3月份的工资?

在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图像与x轴、y轴分别交于A,B两点,且与反比例函数y=4/x的图像的一个交点为P(1,m).(1)求m的值;(2)若PA=2AB,求k的值.

某科技公司销售高新科技产品,该产品成本为8万元,销售单价x(万元)与销售量y(件)的关系如下表所示:x(万元) 10 12 14 16y(件) 40 30 20 10(1)求y与x的函数关系式;(2)当销售单价为多少时,有最大利润,最大利润为多少?

如图,在平面直角坐标系中,直线l:y=-2x+b(b≥0)的位置随b的不同取值而变化.(1)已知⊙M的圆心坐标为(4,2),半径为2.当b=______时,直线l:y=-2x+b(b≥0)经过圆心M;当b=______时,直线l:y=-2x+b(b≥0)与⊙M相切;(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.

若一次函数y=2x+2的图象经过点(3,m),则m=_________.

在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图像由函数y=1/2 x的图像向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>-2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.

计算(-3)+(-2)的结果等于【 】

tan45°的值等于【 】

在平面直角坐标系xOy中,点M(-4,2)关于x轴对称的点的坐标是【 】

在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=________.

若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8/x的图像上,则x1,x2,x3的大小关系是【 】

如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是【 】

如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:tan35°≈0.70,tan42°≈0.90.

在“看图说故事”活动中,某学习小组结合图像设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km.小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓,给出的图像反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(I)填表:离开学生公寓的时间/min 5 8 50 87 112离学生公寓的距离/km 0.5 ___ ___ 1.6 ___(Ⅱ)填空:①阅览室到超市的距离为________km;②小琪从超市返回学生公寓的速度为________km/min;③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为________min.(Ⅲ)当0≤x≤92时,请直接写出y关于x的函数解析式.

已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(-1,0)和点B.(I)若b=-2,c=-3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.

把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为____________.

已知二次函数y=ax2+bx+c的图像过点(-1,0),且对任意实数x都有4x-12≤ax2+bx+c≤2x2-8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图像与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次数图像上的动点,问在x轴上是否存在点N,使得以A,C,M,N为顶点的四边形是平行四边形,若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.

二次函数y=ax2+bx+c的图像与一次函数y=2ax+b在同一平面直角坐标系中的图像可能是【 】

已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是【 】

抛物线y=x2-1交x轴于A,B两点(A在B的左边),(1) ▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上.①如图(1),若点C的坐标是(0,3),点E的横坐标是5,直接写出点A,D的坐标;②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+FH的值是定值.

已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为【 】

如图(左)所示,以点M(-1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=-/3 x-5/3与⊙M相切于点H,交x轴于点E,交y轴于点F. (1)请直接写出OE,⊙M的半径r,CH的长;(2)如图(中)所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图(右)所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交ⅹ轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.

如图,已知点A(5,2),B(5,4),C(8,1),直线l⊥x轴,垂足为点M(m,0),其中m<5/2,若△A'B'C'与△ABC关于直线l对称,且△A'B'C'有两个顶点在函数y=k/x(k≠0)的图像上,则k的值为__________.

在半面直角坐标系中,点(3,2)关于x轴对称的点的坐标为【 】

如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是【 】

如图所示,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为_________.

如图,在平面直角坐标系中,ΔOAB的顶点A,B的坐标分别为(3,),(4,0).把ΔOAB沿x轴向右平移得到ΔCDE,如果点D的坐标为(6,),则点E的坐标为_________.

将290000用科学记数法表示应为【 】