问答题(2021年广东省深圳市

某科技公司销售高新科技产品,该产品成本为8万元,销售单价x(万元)与销售量y(件)的关系如下表所示:

x(万元) 10 12 14 16

y(件) 40 30 20 10

(1)求y与x的函数关系式;

(2)当销售单价为多少时,有最大利润,最大利润为多少?

答案解析

(1)由表格中数据可知,y与x之间的函数关系为一次函数关系,设y=kx+b(k≠ 0 ),则,解得∴y与x的函数关系式为y=-5x+90.(2)设该产品的销售利润为w,由题意得:w=y(x-8) =(...

查看完整答案

讨论

暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如图,请你为广告牌填上原价.原价:_________元暑假八折优惠,现价:160元.

一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是【 】

我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数、物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是【 】

“30天无理由退货”是营造我省“诚信旅游”良好环境,进一步提升旅游形象的创新举措机场、车站、出租车、景区、手机短信……,"30天无理由退货”的提示随处可见,它已成为一张云南旅行的“安心卡”,极大地提高了旅游服务的品质。刚刚过去的“五·一”假期,旅游线路、住宿、餐饮、生活服务、购物等旅游消费的供给更加多元,同步的是云南旅游市场强劲复苏.某旅行社今年5月1日租用A、B两种客房一天,供当天使用。下面是有关信息:(1)今天用2000元租到A客房的数量与用1600元租到B客房的数量相等. (2)今天每间A客房的租金比每间B客房的租金多40元。 请根据上述信息,分别求今年5月1日该旅行社租用的A、B两种客房每间客房的租金。

2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张)某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.

某商场将一款空调按标价的八折出售,仍可获利 10%,若该空调的进价为2000元,则标价________元.

某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价______元。

某企业有A、B两条加工相同原材料的生产线,在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.第一天,该企业将5吨原材料分配到A,B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A生产线的吨数与分配到B生产线的吨数的比为________.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A生产线分配了m吨原材料,给B生产线分配了n吨原材料,若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m/n的值为_______.

“曹冲称象”是流传很广的故事,如图,按照他的方法:先将象牵到大船上,并在船侧面标记水位再将象牵出,然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置,已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是【 】

下列命题①方程x2=x的解是x=1;②4的平方根是2;③有两边和一角相等的两个三角形全等;④连接任意四边形各边中点的四边形是平行四边形;其中正确的个数有【 】

在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图像经过点(4,3),(-2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.

在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图像可能是【 】

若一次函数y=2x+2的图象经过点(3,m),则m=_________.

甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是【 】

已知函数y=ax+b经过(1,3),(0,-2),则a - b=【 】

如图,在平面直角坐标系中,直线l:y=-2x+b(b≥0)的位置随b的不同取值而变化.(1)已知⊙M的圆心坐标为(4,2),半径为2.当b=______时,直线l:y=-2x+b(b≥0)经过圆心M;当b=______时,直线l:y=-2x+b(b≥0)与⊙M相切;(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.

已知点A(,m),B(3/2,n)在一次函数y=2x+1的图像上,则m与n的大小关系是【 】

甲、乙两人沿同一直道从A地去B地,甲比乙早1min出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离y1(单位:m)与时间x(单位:min)之间的函数关系如图所示.(1)在图中画出乙离A地的距离y2(单位:m)与时间x之间的函数图;(2)若甲比乙晚5min到达B地,求甲整个行程所用的时间.

某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成下图中的射线l1,射线l2分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资y1(单位:元)和y2(单位:元)与其当月鲜花销售量x(单位:千克)( x≥0)的函数关系. (1)分别求y1,y2与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元,这个公司采用了哪种方案给这名销售人员付3月份的工资?

在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图像与x轴、y轴分别交于A,B两点,且与反比例函数y=4/x的图像的一个交点为P(1,m).(1)求m的值;(2)若PA=2AB,求k的值.

若二次函数y=ax2+bx+c的图像与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2 ),且经过点A(0,2),过点A的直线l与x轴交于点C,与该函数的图像交于点B (异于点A).满足△ACN是等腰直角三角形,记△AMN的面积为S1,△BMN的面积为S2,且S2=5/21.(1)抛物线的开口方向______(填“上”或“下”);(2)求直线l相应的函数表达式;(3)求该二次函数的表达式.

若关于x的一元二次方程x2+2x-k=0无实数根,则k的取值范围是_________.

超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?

如图,抛物线y=ax2-2x+c(a≠0)过点O(0,0)和A(6,0),点B是抛物线的顶点,点D是x轴下方抛物线上的一点,连接OB,OD.(1)求抛物线的解析式;(2)如图①,当∠BOD=30°时,求点D的坐标; (3)如图②,在(2)的条件下,抛物线的对称轴交x轴于点C,交线段OD于点E,点F是线段OB上的动点(点F不与点O和点B重合,连接EF,将ΔBEF沿EF折叠,点B的对应点为点B,ΔEFB'与ΔOBE的重叠部分为ΔEFG,在坐标平面内是否存在一点H,使以点E,F,G,H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,若不存在,请说明理由.

儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x>0).(1)求M型服装的进价;(2)求促销期间每天销售M型服装所获得的利润W的最大值.

如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.

对抛物线:y=-x2+2x-3而言,下列结论正确的是【 】

如图(左),抛物线y=ax2+bx+c (a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0). (1)求抛物线的解析式;(2)如图(中),过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图(右),在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN//BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.

二次函数y=x2-2x+6的最小值是________.

如图,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?