填空题(2020年辽宁省

若关于x的一元二次方程x2+2x-k=0无实数根,则k的取值范围是_________.

答案解析

k<-1

讨论

若一次函数y=2x+2的图象经过点(3,m),则m=_________.

截至2020年3月底,我国已建成"5G" 基站198 000个,将数据198 000用科学记数法表示为_________.

如图,在RtΔABC中,∠ACB=90°,AC=BC=2,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是【 】

如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8,BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是【 】

随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为【 】

一组数据1,8,8,4,6,4的中位数是【 】

一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是【 】

某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是【 】

下列图形中,既是轴对称图形又是中心对称图形的是【 】

下列运算正确的是【 】

已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(-1,0)和点B.(I)若b=-2,c=-3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.

已知二次函数y=ax2+bx+c的图像开口向下,对称轴为直线x=-1,且经过点(-3,0),则下列结论正确的是【 】

已知二次函数y=x2+mx+m2-3(m为常数,m>0)的图像经过点P(2,4).(1)求m的值:(2)判断二次函数y=x2+mx+m2-3的图像与x轴交点的个数,并说明理由.

李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元。根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?

二次函数y=ax²+bx+c 图象如图,下列正确的个数为【 】①bc>0;②2a-3c<0;③2a+b>0;④ax²+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.

竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=-5t2+v0t+h0表示,其中h0 (m)是物体抛出时离地面的高度,v0 (m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为【 】

如图,抛物线y=x2-x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,-3). (1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为 (m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.

如图,抛物线y= x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD. (3+)/6(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上,当ΔABD与ΔBPQ相似时,请直接写出所有满足条件的点Q的坐标.

已知抛物线 y=x2-(m+1)x+2m+3.(1) 当m=0时,请判断点(2,4)是否在该抛物线上;(2) 该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3) 已知点E(-1,-1),F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.

已知抛物线y=1/2 x2+x+c与x轴没有交点.(1)求c的取值范围;(2)试确定直线y=cx+1经过的象限,并说明理由.

如图,用绳子围成周长为10m的矩形,记矩形的一边长为xm,它的邻边长为ym,矩形的面积为Sm2.当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是【 】

在“看图说故事”活动中,某学习小组结合图像设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km.小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓,给出的图像反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(I)填表:离开学生公寓的时间/min 5 8 50 87 112离学生公寓的距离/km 0.5 ___ ___ 1.6 ___(Ⅱ)填空:①阅览室到超市的距离为________km;②小琪从超市返回学生公寓的速度为________km/min;③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为________min.(Ⅲ)当0≤x≤92时,请直接写出y关于x的函数解析式.

若反比例函数y=k/x(k≠0)的图像经过点(2,-3),则它的图像也一定经过的点是【 】

下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x;其中,变量y与变量x之间的函数关系可以利用如图所示的图象表示的是【 】

在平面直角坐标系xOy中,若点A(2,y1),B(5,y2)在反比例函数y=k/x(k>0)的图像上,则y1 _____ y2(填“>”“=”或“<”).

如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=1/x的图像经过点C,y=k/x(k≠0)的图像经过点B.若OC=AC,则k=________.

如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).(1) m为何值时,△OAB面积最大? 最大值是多少?(2)如图2,在(1)的条件下,函数y=k/x(k>0)的图像与直线AB相交于C,D两点,若S△OCA=1/8 S△OCD,求k的值.(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).

如图,双曲线y=k/x经过Rt△OBC斜边上的点A,且满足AO/AB=2/3,与BC交于点D,S△BOD=21,则k=________.

已知点A(x1,y1 ),B(x2,y2 ),C(x3,y3 )都在反比例函数y=k/x (k<0)的图像上,且x1<x2<0<x3,则y1,y2,y3的大小关系是【】

已知函数y=,则自变量x的取值范围是___________.