问答题(2021年广东省广州市

如图,在平面直角坐标系xOy中,直线l:y=1/2 x+4分别与x轴,y轴相交于A,B两点,点P(x,y)为直线l在第二象限的点.

(1) 求A,B两点的坐标;

(2) 设△PAO的面积为S,求S关于x的解析式,并写出x的取值范围;

(3) 作△PAO的外接圆⨀C,延长PC交⨀C于点Q,当△POQ的面积最小时,求⨀C的半径.

答案解析

(1)∵直线l:y=1/2 x+4分别与x轴,y轴相交于A,B两点,∴当x=0时,y=4;当y=0时,x=-8,∴A(-8,0),B(0,4);(2)∵点P(x,y)为直线l在第二象限的点,∴P(x,1/2 x+4),∴S△APO=1/2×OA×(1/2 x+4)=2x+16 (-8<x<0)即 S=2x+16 (-8<x<0);(3)∵A(-8,0),B(0,4),∴OA=8,OB=4,AB==4√5.在⨀C中,PQ是直径,∴∠POQ=90°,∵∠P...

查看完整答案

讨论

如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=________.

如图,在⊙O中,圆心角∠AOB=120°,弦AB=2cm,则OA=_______cm.

如图(左),已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙0于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图(右),连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留T与根号)

如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为【 】

如图,AB是⨀O的直径,BC是⨀O的弦,先将 沿BC翻折交AB于点D,再将沿AB翻折交BC于点E.若=,设∠ABC=α,则α所在的范围是【 】

如图,ABAB是⨀O的直径,C,D是⨀O上两点,C是的中点.过点C作AD的垂线,垂足是E.连接AC交BD于点F.(1)求证:CE是⨀O的切线;(2)若DC/DF=,求cos∠ABD的值.

如图,四边形ABCD内接于⨀O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.

如图,在ΔABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F. (1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).

如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平分,则DC的长为【 】

如图,⊙O是ΔABC的外接圆,其切线AE与直径BD的延长线相交于点E,且AE=AB. (1)求∠ACB的度数;(2)若DE=2,求⊙O的半径.

儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x>0).(1)求M型服装的进价;(2)求促销期间每天销售M型服装所获得的利润W的最大值.

如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.

对抛物线:y=-x2+2x-3而言,下列结论正确的是【 】

如图(左),抛物线y=ax2+bx+c (a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0). (1)求抛物线的解析式;(2)如图(中),过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图(右),在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN//BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.

二次函数y=x2-2x+6的最小值是________.

如图,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?

已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:①若抛物线经过点(-3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=-2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1 ),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是________(填写序号).

如图(左),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等.设x=AD,y=AE+CD,y关于x的函数图像如图(右),图像过点(0,2),则图像最低点的横坐标是________.

已知抛物线y=x2+kx-k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是【 】

如图,二次两数y=x2-(m+1)x+m(m是实数,且-1<m<0)的图像与x轴交于A,B两点(点A在点B的左侧),其对称轴与x轴交于C.已知点D位于第一象限,且在对称轴上,OD⊥BD,点E在x轴的正半轴上,OC=EC,连接ED并延长交y轴于点F,连接AF. (1)求A,B,C三点的坐标(用数字或含m的式子表示);(2)已知点Q在拋物线的对称轴上,当△AFQ的周长的最小值等于12/5时,求m的值.

第33个国际禁毒日到来之际,贵阳市策划了以“健康人生,绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下: (1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?

把1-9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为【 】

使在实数范围内有意义,x的取值范围是__________.

升旗时,旗子的高度h(米)与时间t(分)的函数图象大致为【 】

深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:表1:表2:(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费元y(元)与x(台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?

端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50<x<65),y表示该商家每天销售猪肉粽的利润(单位:元).求y关于x的函数解析式并求最大利润.

已知函数y=,则自变量x的取值范围是___________.

已知y=-x+5,当x分别取1,2,3,……,2020时,所对应y值的总和是_________.

通过课本上对函数的学习,我们积累了一定的经验.下表是一个函数的自变量x与函数值y的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:x … 0 1 2 3 4 5 …y … 6 3 2 1.5 1.2 1 … (1)当x=_________时,y=1.5;(2)根据表中数值描点(x,y),并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质:___________________________.

如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).(1) m为何值时,△OAB面积最大? 最大值是多少?(2)如图2,在(1)的条件下,函数y=k/x(k>0)的图像与直线AB相交于C,D两点,若S△OCA=1/8 S△OCD,求k的值.(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).