已知二元函数f(x,y)=.
(1)求fx(0,y);
(2)证明:fxy(0,0)=-1.
已知二元函数f(x,y)=.
(1)求fx(0,y);
(2)证明:fxy(0,0)=-1.
(1)当y=0时,fx (0,0)=(f(x,0)-f(0,0))/x=(0-0)/x=0,当y≠0时,fx (0,y)=(f(x,y)-f(0,y))/x==-y.∴fx (0,y)=.(2) fx...
查看完整答案已知幂级数(-1)nn(n+1) xn .(1)求幂级数的收敛半径、收敛区间以及和函数;(2)计算(-1)nn(n+1)/4n .
已知a1=2,an+1=1/2 (an+1/an ),证明:(1)数列{an }收敛;(2) (an/an+1 -1) 收敛.
已知y=arctanx.(1)证明:2xy'+(1+x2 )y''=0;(2)求y(n).
已知:z=x2 F(y/x2),其中F(u)的一阶偏导数存在,证明:x ∂z/∂x+2y ∂z/∂y=2z.
证明:tanx/x > x/sinx,其中x∈(0,π/2).
已知z=f(u,v),其中u=2x+y,v=x2,求∂z/∂x,∂z/∂y,∂2/∂x2,∂2z/∂x∂y.
设z=1/x·f(xy)+yf(x+y),求∂2z)/∂x∂y.
若f(x,y)的偏导数fx,fy在(x0,y0)存在,则f(x,y)在(x0,y0)连续.
用变换ξ=x,η=x2+y2化简方程y ∂z/∂x-x ∂z/∂y=0,并求出这个方程的通解z=z(x,y).
设φ(t),ψ(t)有二阶连续导数,u=φ(y/x)+xψ(y/x),求:x2 ∂2u/∂x2+2xy ∂2u)/∂x∂y+y2 ∂2u/∂y2.
设u=e-xsin(x/y),则∂2u)/∂x∂y在点(2,1/π)处的值为________.
二元函数f(x,y)在点(x0,y0)处两个偏导数fx' (x0,y0 ),fy' (x0,y0)存在是f(x,y)在该点连续的【 】
设变换可把方程6 ∂2z/∂x2 +∂2z/∂x∂y-∂2z/∂x∂y=0化简为∂2z/∂u∂v=0,求常数a,其中z=z(x,y)有二阶连续的偏导数.
设函数f(x,y)可微,且f(x+1,ex)=x(x+1)2 , f(x,x2)=2x2lnx,则df(1,1)=【 】
已知f(x,y)在(x0,y0)的某邻域内,fx(x,y)连续,fy(x0,y0)存在,证明:f(x,y)在(x0,y0)可微.
若f(x,y)在区域D内对x和y都是连续的,则f(x,y)对(x,y)D为二元连续.
设x(y),z(y)是由方程组所确定的隐函数,求x'(y),z'(y).
求函数f(x,y)=1/2(xn+yn)(n是正整数)在条件x+y=a(x≥0,y≥0,常数a>0)下的极值.
设参数方程x=f'(t),y=tf'(t)-f(t),其中函数f(t)可以求导足够次数,求一阶导数dy/dx和二阶导数d2y/dx2.