若函数f(x)在[0,1]上连续,f(0)=0,f(1)=1,则对任何自然数n≥1,存在ξ_n∈[0,1],使得f(ξn+1/n)=f(ξn )+1/n.
若函数f(x)在[0,1]上连续,f(0)=0,f(1)=1,则对任何自然数n≥1,存在ξ_n∈[0,1],使得f(ξn+1/n)=f(ξn )+1/n.
假设∃n,对∀ξn∈[0,1]都有f(ξn+1/n)≠f(ξn )+1/n.令F(x)=f(x+1/n)-f(x)-1/n,根据假设知F(x)在[0,1]上无零点,又F(x)在[0,1]上连续,所以F...
查看完整答案设F(x)=,其中f(x)在x=0处可导,f' (0)≠0,f(0)=0,则x=0是F(x)的【 】
试问函数f(x,y)=sin[π/(1-x2-y2 )]在区域D:{(x,y)∈R2;x2+y2<1}上是否一致连续?证明你的结论.
设函数f(x)在(0,1)上有定义,且函数exf(x)与函数e-f(x)在(0,1)上都是单调递增的,求证:f(x)在(0,1)上连续.
设f(x)在(a,b)上一致连续,则f(x)在(a,b)上有界.
设函数f(x)在[0,+∞)连续,(f(x)-k√x)=0,k>0为常数,证明:f(x)在[0,+∞)上一致连续.