计算题(2022年东北大学

设f(x)=1/x+lnx,求f(x)的最小值.

答案解析

对f(x)求导得f'(x)=-1/x2 +1/x,令f'(x)=0,解得x=1,当x>1时,f'(x)>0,f(x)单调递增,当x<1时,f'(x)<0,f(x)单调递减,故当x=1时,f...

查看完整答案

讨论

判断dx/(ex+1)的敛散性.

求极限(x-xx)/(1-x+lnx)

设R3上的函数u具有二阶连续偏导数,且不恒为常数,并满足方程∆u+u5=0,∆=∂2/(∂x2 )+∂2/(∂y2 )+∂2/(∂z2 ).令uλ (x,y,z)=λα u(λx,λy,λz),α是某非零常数,使得对任意的λ>0,函数uλ都满足Δuλ+uλ5=0.(1)求常数α;(2)若积分|∇uλ (x,y,z)|2 dxdydz收敛,则对任意的λ>0,以下等式成立:|∇uλ (x,y,z)|2 dxdydz=|∇u(x,y,z)|2 dxdydz,这里∇=(∂/∂x,∂/∂y,∂/∂z);(3)假设D是R3中的一个有界光滑曲面∂D围成的区域,且 u|∂D=0,证明:∫D|u(x,y,z)|6 dxdydz=∫D|∇u(x,y,z)|2 dxdydz.

说明理由并证明:在什么条件下,方程F(x1,x2,⋯,xn )=0都能在x0∈Rn附近唯一确定可微函数xj=xj (x1,⋯,xj-1,xj+1,⋯,xn).并在x0附近,求(∂x1)/(∂x2 )(x)∙(∂x2)/(∂x3 )(x)⋯(∂xn-1)/(∂xn )(x)∙(∂xn)/(∂x1 )(x).

求曲面积分∬S(z3-x)dydz-xydzdx-3zdxdy.其中S是由曲面z=4-y2,平面x=0,平面x=3以及xOy平面围成立体的表面,取外侧.

求积分I(a)=arctan⁡(ax)/(x(1+x2)) dx,a>0.

设级数sinnx/(1+nx2)(1)当x取何值时,级数绝对收敛?并说明理由;(2)当x取何值时,级数条件收敛?并说明理由.

设f(x)=(1)求f(x)的傅里叶级数与傅里叶级数的和函数;(2)证明:1/n2 =π2/6.

设f(x)在(0,1)上可导,在[0,1]上连续,且f(1)-f(0)=2e-1-1.证明:存在ξ∈(0,1),使得eξ^2 f' (ξ)+2ξ3=0.

设a,b,c,d皆为常数,cd≠0,说明并给出理由,当a,b,c,d满足什么条件时,f(x)=(ax+b)/(cx+d)无极值.

设两函数f(x)及g(x)都在x=a处取得极大值,则函数F(x)=f(x)g(x)在x=a处【 】

在椭圆x2/a2 +y2/b2 =1的第一象限上求一点P,使该点处的切线、椭圆及两坐标轴所围成图形面积为最小(其中a>0,b>0).

试求椭圆x2/4+y2=1上一点,使其到直线3x+4y-12=0,3x-4y+12=0和y+3=0的距离平方和最小.

去年,张师傅因为多旋圈面爆红,今年他来到了达摩院给扫地僧做面。某天,软件工程师小李跟张师傅吐槽工作。小李主要硏究和设计算法用于调节各种产品的参数。这样的参数一般可以通过极小化Rn上的某个损失函数f求得。在小李最近的一个项目中,这个损失函数是另外一个课题组提供的;出于安全考虑和技术原因,该课题组难以向小李给出此函数的内部细节,而只能提供一个接口用于计算任意x∈Rn处的函数值f(x)。所以,小李必须仅基于函数值来极小化f。而且,每次计算f的值都消耗不小的计算资源。好在该问题的维度n不是很高(10左右)。另外,提供函数的同事还告知小李不妨先假设f是光滑的。这个问题让张师傅想起了自己收藏的一台古董收音机。要在这台收音机上收听一个节目,你需要小心地来回拧一个调频旋钮,同时注意收音效果,直到达到最佳。在这过程中,没有人确切地知道旋钮的角度和收音效果之间的定量关系是什么。张师傅和小李意识到,极小化f不过就是调节一台有多个旋钮的机器:想象x的每一个分量由一个旋钮控制,而f(x)表示这台机器的某种性能,只要我们来回调整每个旋钮,同时监视f的值,应该就有希望找到最佳的x。受此启发,两人一起提出了极小化f的一个迭代算法,并命名为“自动前后调整算法”( Automated Forward/Backward Tuning,AFBT,算法1)。在第k次迭代中,AFBT通过前后调整xk的单个分量得2n个点{xk±tk ei:i=1,…,n},其中tk为步长;然后,令yk为这些点中函数值最小的一个,并检査yk是否使f充分减小;若是,取xk+1=yk,并将步长增倍;否则,令xk+1=xk并将步长减半。在算法1中,ei表示Rn中的第i个坐标向量,它的第i个分量为1,其余皆为0; I(∙) 为指示函数——若f(xk )-f(yk)至少为tk之平方,则I[f(xk )-f(yk )≥tk2]取值为1,否则为0。1自动前后调整算法(AFBT)输入x0∈Rn,t0>0。对k=0,1,2,…,执行以下循环。1:yk≔argmin{f(y):y=xk±tk ei,i=1,…,n} #计算损失函数。2:sk≔I[f(xk )-f(yk )≥tk2] #是否充分下降?是:sk=1;否:sk=0。3:xk+1≔(1-sk ) xk+sk yk #更新迭代点。4:tk+1≔2(2sk-1 ) tk #更新步长。sk=1:步长增倍;sk=0:步长减半。现在,我们对损失函数f:Rn→R作出如下假设。假设1. f为凸函数,即对任何x,y∈Rn与α∈[0,1]都有f((1-α)x+αy)≤(1-α)f(x)+αf(y).假设2. f在Rn上可微且∇f在Rn上 L-Lipschitz连续。假设3. f的水平集有界,即对任意λ∈R,集合{x∈Rn:f(x)≤λ}皆有界。基于假设1与假设2,可以证明〈∇f(x),y-x〉≤f(y)-f(x)≤〈∇f(x),y-x〉+L/2 ‖x-y‖2对任何x,y∈Rn成立;假设1与假设3则保证f在Rn上取到有限的最小值f*。凸函数的更多性质可参考任何一本凸分析教科书。证明题(20分) 在假设1-3下,对于AFBT,证明f(xk)=f*.

某厂家生产一种产品同时在两个市场上销售,价格分别为P1和P2,销量分别为q1和q2,需求满足下列关系:q1=24-0.2P1;q2=10-0.05P2.成本函数为:C=35+40(q1+q2)试问厂家如何确定两个市场的价格才能使获利最大?最大为多少?

某企业生产某种商品,年产x件时总成本为c(x)=c+dx,年需求量是价格p的线性函数为a-bp(其中a,b,c,d均为常数),试求:(1)利润最大时的产量及最大利润;(2)需求对价格的弹性。

设f(x)=nx(1-x)n(n为自然数),求(1) f(x)在[0,1]上的最大值M(n)={f(x)}.(2)求M(n).

已知二元函数z=z(x,y):z(x,y)=1/4[4(tgx+tgy)2 - 12tgx∙tgy - 3],试求:二元函数z=z(x,y)在正方形区域:D ̅:-π/4≤x≤π/4,-π/4≤y≤π/4 里的最大值zmax=?和最小值zmin=?,并指出二元函数z=z(x,y)在闭区域D ̅里何点处取得最大值zmax和最小值zmin?

当x=______时,函数y=x∙2x取得极小值.

设(f(x)-f(a))/(x-a)2=-1,则在x=a处【 】