问答题(2022年天津市

如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).

参考数据:tan35°≈0.70,tan42°≈0.90.

答案解析

如图,根据题意,BC=32,∠APC=42°,∠APB=35°.在Rt△PAC中,tan∠APC=AC/PA⟹PA=AC/(tan∠APC).在Rt△PAB中,tan∠APB=AB/PA⟹PA=AB/...

查看完整答案

讨论

如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是【 】

如图,数字代表所在正方形的面积,则A所代表的正方形的面积为________.

如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于1/2 MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为 __________.

如图,小山岗的斜坡AC的坡度是tanα=3/4,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26:6°=0.45, cos26.6°=0.89, tan26.6°=0.50).

如图,每个小正方形边长均为1,则图中的三角形(阴影部分)与下图中△ABC相似的是【 】

如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为【 】

如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为y=1/2 x-1,则tanA的值是______.

如图,在平面直角坐标系中,△AOB的边AO、AB的中点C、D的横坐标分别是1、4,则点B的横坐标是______.

如图,已知点O是△ABC的外心,∠A=40°,连结BO、CO则∠BOC的度数是【 】

在正方形ABCD中,等腰直角△AEF, ∠AFE=90°,连接CE,H为CE的中点,连接BH、BF、HF,发现BF/BH和∠HBF为定值. (1)①BF/BH=________;②∠HBF=________;③小明为了证明①②,连接AC交BD于O,连接OH,证明了OH/AF和BA/BO的关系,请你按他的思路证明①②.(2)小明又用三个相似三角形(两个大三角形全等)摆出下图,BD/AD=EA/FA=k,∠BDA=∠EAF=θ(0°<θ<90°).①FD/HD=________(用k的代数式表示)②FH/HD=________(用k,θ的代数式表示)

在平面直角坐标系xOy中,点M(-4,2)关于x轴对称的点的坐标是【 】

在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=________.

若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8/x的图像上,则x1,x2,x3的大小关系是【 】

如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是【 】

若一次函数y=x+b(b是常数)的图像经过第一、二、三象限,则b的值可以是______(写出一个即可).

在“看图说故事”活动中,某学习小组结合图像设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km.小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓,给出的图像反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(I)填表:离开学生公寓的时间/min 5 8 50 87 112离学生公寓的距离/km 0.5 ___ ___ 1.6 ___(Ⅱ)填空:①阅览室到超市的距离为________km;②小琪从超市返回学生公寓的速度为________km/min;③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为________min.(Ⅲ)当0≤x≤92时,请直接写出y关于x的函数解析式.

已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(-1,0)和点B.(I)若b=-2,c=-3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.

已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当b/a的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定.若抛物线y=ax2+bx+2(a≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则b/a的值是______.

已知抛物线y=-2x2+bx+c经过点(0,-2),当x<-4时,y随x的增大而增大,当x>-4时,y随x的增大而减小.设r是抛物线y=-2x2+bx+c与x轴的交点(也称公共点)的横坐标,m=(r9+r7-2r5+r3+r-1)/(r9+60r5-1).(1)求b,c的值;(2)求证:r4-2r2+1=60r2;(3)以下结论:m<1,m=1,m>1,你认为哪个正确?请证明你的结论.

设O为坐标原点,点A,B为抛物线y=x2上的两个动点,且OA⊥OB.连接点A,B,过O作OC⊥AB于点C,则点C到y轴距离的最大值【 】