单项选择(2020年甘肃省天水市

若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=c/x在同一平面直角坐标系中的图象大致是【 】

A、

B、

C、

D、

答案解析

B

讨论

下列图形中,是中心对称图形但不是轴对称图形的是【 】

如图所示,PA、PB分别与⊙O相切于 、 两点,点 为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为【 】

某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为【 】

某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是【 】

天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为【 】

下列四个实数中,是负数的是【 】

如图,抛物线y=x2-x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,-3). (1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为 (m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.

问题情境:如图①,点E为正方形ABCD内一点,∠AEB=90°,将RtΔABE绕点B按顺时针方向旋转90°,得到ΔCBE'(点A的对应点为点C),延长AE交CE'于点F,连接DE.猜想证明:(1)试判断四边形BE' FE的形状,并说明理由;(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE的长.

图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC和DEF是闸机的“圆弧翼”,两圆弧翼成轴对称,BC和EF均垂直于地面,扇形的圆心角∠ABC=∠DEF=28°,半径BA=ED=60cm,点A与点D在同一水平线上,且它们之间的距离为10cm. (1)求闸机通道的宽度,即BC与EF之间的距离(参考数据:sin⁡28°≈0.47,cos⁡28°≈0.88,tan⁡28°≈0.53);(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.

阅读与思考下面是小宇同学的数学日记,请仔细阅读并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°. 办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空;“办法一”依据的一个数学定理是_____________________________________;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法依据的数学定理或基本事实(写出一个即可)

已知抛物线y=x2+kx-k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是【 】

如图,二次两数y=x2-(m+1)x+m(m是实数,且-1<m<0)的图像与x轴交于A,B两点(点A在点B的左侧),其对称轴与x轴交于C.已知点D位于第一象限,且在对称轴上,OD⊥BD,点E在x轴的正半轴上,OC=EC,连接ED并延长交y轴于点F,连接AF. (1)求A,B,C三点的坐标(用数字或含m的式子表示);(2)已知点Q在拋物线的对称轴上,当△AFQ的周长的最小值等于12/5时,求m的值.

已知二次函数y=ax2+bx+c的图像经过(-2,1),(2-3)两点.(1)求b的值.(2)当c>-1时,该函数的图像的顶点的纵坐标的最小值是__________.(3)设(m,0)是该函数的图像与x轴的一个公共点,当-1<m<3时,结合函数的图像,直接写出a的取值范围.

已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1 (x1,y1 ),P2 (x2,y2)是抛物线上不同于A,B的两个点,记△P1 AB的面积为S1,△P2 AB的面积为S2.有以下结论:①当x1>x2+2时,S1>S2;②当x1<2-x2时,S1<S2;③当|x1-2|>|x2-2|>1时,S1>S2;④当|x1-2|>|x2+2|>1时,S1<S2.其中正确结论的个数是【 】

已知抛物线y=-2x2+bx+c经过点(0,-2),当x<-4时,y随x的增大而增大,当x>-4时,y随x的增大而减小.设r是抛物线y=-2x2+bx+c与x轴的交点(也称公共点)的横坐标,m=(r9+r7-2r5+r3+r-1)/(r9+60r5-1).(1)求b,c的值;(2)求证:r4-2r2+1=60r2;(3)以下结论:m<1,m=1,m>1,你认为哪个正确?请证明你的结论.

设O为坐标原点,点A,B为抛物线y=x2上的两个动点,且OA⊥OB.连接点A,B,过O作OC⊥AB于点C,则点C到y轴距离的最大值【 】

把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为____________.

已知二次函数y=ax2+bx+c的图像过点(-1,0),且对任意实数x都有4x-12≤ax2+bx+c≤2x2-8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图像与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次数图像上的动点,问在x轴上是否存在点N,使得以A,C,M,N为顶点的四边形是平行四边形,若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.

二次函数y=ax2+bx+c的图像与一次函数y=2ax+b在同一平面直角坐标系中的图像可能是【 】

如图,二次函数y=-1/4 x2+3/2 x+4的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点P是第一象限内二次函数图像上的一个动点,高点P的横坐标为m,过点P作PD⊥x轴于点D,作直线BC交PD于点E. (1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过P作直线l//AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CD=FD,若存在,请直接写出m的值;若不存在,请说明理由.

如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sinB的值是______.

计算|1-tan60°|的值为【 】

如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:tan35°≈0.70,tan42°≈0.90.

如图1,抛物线y=ax2+2x+c经过点A(-1,0),C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D. (1)求该抛物线的函数表达式;(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;(3)点Q在抛物线上,当PD/AD的值最大且△APQ是直角三角形时,求点Q的横坐标; (4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI//y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y轴上时,请直接写出点G的坐标。

如图,正比例函数y=kx与函数y=6/x的图像交于A,B两点,BC//x轴,AC//y轴,则S△ABC=________.

已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当b/a的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定.若抛物线y=ax2+bx+2(a≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则b/a的值是______.

若反比例函数的图象经过点(1,-2),则该反比例函数的解析式(解析式也称表达式)为_________.

端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50<x<65),y表示该商家每天销售猪肉粽的利润(单位:元).求y关于x的函数解析式并求最大利润.

如图,已知反比例函数过A,B两点,A点坐标(2,3),直线AB经过原点,将线段AB绕点B顺时针旋转90°得到线段BC,则C点坐标为________.

抛物线y=ax2+bx+c经过点(-1,0),(3,0),且与y轴交于点(0,-5),则当x=2时,y的值为【 】