单项选择(2024年新高考Ⅰ

若z/(z-1)=i+1,则z=【 】

A、-1-i

B、-1+i

C、1-i

D、1+i

答案解析

C

【解析】

解答过程见word版

讨论

Determine all composite integers n>1 that satisfy the following property:if d1,d2,⋯,dk are all the positive divisors of n with 1=d1<d2<⋯<dk=n, then di divides di+1+di+2 for every 1≤i≤k-2.译文:设1=d1<d2<⋯<dk=n是合数n的全部正因数,若对任意1≤i≤k-2,有di |di+1+di+2,求n.

设x1,x2,⋯,x2023为两两不等的正实数,对任意一个n=1,2,⋯,2023,an=都是一个整数.证明:a2023≥3034.

使得n²+2023n为平方数的正整数n的最小值是__________.

已知a,b为正整数,a<b,且a,b互质.若关于x,y的不等式ax+by≤ab有且仅有2023组正整数解,则(a,b)=____________________(求出满足题意的所有可能数组).

求所有不超过100的正整数k,使得存在整数n,满足:k|(3n6+26n4+33n2+1)

设有理数r=p/q∈(0,1),其中p,q为互素的正整数,且pq整除3600.这样的有理数r的个数为________.

已知复数列{zn}满足:z1=√3/2,zn+1=zn ̅(1+zni)(n=1,2,⋯)其中i为虚单位.求z2021的值.

给定正整数k(k≥2)与k个非零实数a1,a2,⋯,ak.证明:至多有有限个k元整数组(n1,n2,⋯,nk),满足n1,n2,⋯,nk互不相同,且a1∙n1 !+a2∙n2 !+⋯+ak∙nk !=0.

设整数n≥4.证明:若n整除2n-2,则(2n-2)/n是合数.

In the sequence 7,76,769,7692,76923,769230,… ,the nth term is given by the first n digits after the decimal point in the expansion of 10/13=0.7692307692⋯.Prove that of the first 60 terms of the sequence, at least 49 have three or more prime factors (repeated prime factors are allowed; for example, 76=2×2×19 has three prime factors).【译】在10/13=0.7692307692⋯的十进制表示中,由小数点后的前n位数构成数列:7,76,769,7692,76923,769230,… ,求证:在该数列的前60项中,至少有49项有三个或以上的素因子(包含重复的素因子,例如76=2×2×19有三个素因子).