证明题(1946年同济大学

用数学归纳法证明下列恒等式 1³+2³+3³+⋯+n³=[n(n+1)/2]²

答案解析

暂无答案

讨论

命题A:底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥.命题A的等价命题B可以是:底面为正三角形,且____________________的三棱锥是正三棱锥.

设有不同的直线a,b和不同的平面α,β,γ.给出下列三个命题:①若a//α,b//α,则a//b;②若a//α,a//β,则α//β;③若α⊥β,β⊥γ,则α//β.其中正确的个数是【 】

下列命题中正确的命题是【 】

在空间中,①若四点不共面,则这四点中任何三点都不共线.②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是______(把要求的命题序号都填上)

已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为________________________________.

a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的【 】

已知a,b为两条不同的直线,α,β为两个不同的平面且a⊥α,b⊥β,则下列命题的假命题是【 】

用计算器验算函数y= (x>1)的若干个值,可以猜想下列命题中的真命题只能是【 】

设f(x),g(x)都是单调函数,有如下四个命题:①若f(x)单调递增, g(x)单调递增,则f(x)-g(x)单调递增;②若f(x)单调递增, g(x)单调递减,则f(x)-g(x)单调递增;③若f(x)单调递减, g(x)单调递增,则f(x)-g(x)单调递减;④若f(x)单调递减, g(x)单调递减,则f(x)-g(x)单调递减;其中,正确的命题是【 】

等比数列{an}的公比为q,前n项和为Sn,设甲:q>0,乙:{Sn}是递增数列,则【 】

设a>2,给定数列{xn},其中x1 = a,xn+1=(xn2)/(2(xn-1)) (n=1,2,…),求证:(1) xn>2,且xn+1/xn < 1(n=1,2,…);(2) 如果a≤3,那么xn ≤ 2+1/2n-1 (n=1,2,…);(3) 如果a>3,那么当n ≥ (lga/3)/(lg4/3)时,必有xn+1<3.

设f(x)=lg (1+2x+⋯+(n-1)x+nx a)/n,其中a是实数,n是任意给定的自然数且n≥2.(Ⅰ)如果f(x)当x∈(-∞,1]时有意义,求a的取值范围;(Ⅱ)如果a∈(0,1],证明:2f(x)<f(2x)当x≠0时成立.

给定整数n≥2,设M0 (x0,y0)是抛物线y2=nx-1与直线y=x的一个交点.试证明对任意正整数m,必存在整数k≥2,使(x0m,y0m)为抛物线y2=kx-1与直线y=x的一个交点.

设f(x)=x2+a,记f1(x)=f(x),fn(x)=f(fn-1(x)),n=2,3,⋯,M={a∈R│对所有正整数n,|fn(0)|≤2}.证明:M=[-2,1/4].

Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that there is at most one way (up to rotation and refection) to place the elements of S around a circle such that the product of any two neighbours is of the form x2+x+k for some positive integer x. 译文:给定正整数 k,S是一个由有限个奇素数构成的集合.证明:至多只有一种方式(旋转或对称后相同视为同种方式)可以将S中的元素排成一个圆周,且满足任意两个相邻元素的乘积均可以写成x2+x+k的形式 (其中x为正整数) .

用数学归纳法求下列级数1/(1×2)+1/(2×3 )+1/(3×4)+⋯至n项之和.

设有一三角形,其底为 7 cm,高为 5 cm,用圆规及尺作一正方形,其面积与此相等者.

用数学归纳法证明下列恒等式 1³+2³+3³+⋯+n³=[n(n+1)/2]²

用数学归纳法证明下列恒等式 1³+2³+3³+⋯+n³=[n(n+1)/2]²

用数学归纳法证明下列恒等式 1³+2³+3³+⋯+n³=[n(n+1)/2]²