单项选择(2021年北京市

下列多边形中,内角和最大的是【 】

A、

B、

C、

D、

答案解析

D

【解析】

三角形的内角和为180°; 

四边形的内角和为360°;

五边形的内角和为:(5-2)x180°=540°; 

六边形的内角和为:(6-2)x180°=720°.

讨论

如图,点O在直线AB上OC⊥OD.若∠AOC=120°,则∠BOD的大小为【 】.

党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务。2014-2018 年,中央财政累计投入“全面改善贫困地区义务教育薄弱学校基本办学条件"专项补助资金1692亿元,将169200000000用科学记数法表示应为【 】

如图是某几何体的展开图,该几何体是【 】

如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G. (1) 当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2) 当CG=2时,求AE的长;(3) 当点E从点A向右运动到点B时,求点G运动路径的长度.

已知抛物线 y=x2-(m+1)x+2m+3.(1) 当m=0时,请判断点(2,4)是否在该抛物线上;(2) 该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3) 已知点E(-1,-1),F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.

如图,在平面直角坐标系xOy中,直线l:y=1/2 x+4分别与x轴,y轴相交于A,B两点,点P(x,y)为直线l在第二象限的点.(1) 求A,B两点的坐标;(2) 设△PAO的面积为S,求S关于x的解析式,并写出x的取值范围;(3) 作△PAO的外接圆⨀C,延长PC交⨀C于点Q,当△POQ的面积最小时,求⨀C的半径.

如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1) 尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2) 在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.

民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”、“广东技工”、“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?

某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:次数 1 2 3 4 5 6人数 1 2 a 6 b 2(1)表格中的a=______, b=______;(2)在这次调查中,参加志愿者活动的次数的众数为______,中位数为______;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.

已知A=(m/n-n/m)∙(√3 mn)/(m-n).(1) 化简A;(2) 若m+n-2√3=0,求A的值.

如图,在平面直角坐标系中,点P的坐标为(-4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1.(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧AB与弦AB围成的图形的面积(结果保留π).

如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.

如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是【 】

如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行______分钟可使渔船到达离灯塔距离最近的位置.

如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.

如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为【 】

如图,海中有一个小岛A.一艘轮船由西向东航行,在B点测得小岛A在北偏东60°方向上;航行12n mile到达C点,这时测得小岛A在北偏东30°方向上.小岛A到航线BC的距离是________n mile(≈1.73,结果用四舍五入法精确到0.1).

如图,线段AB=10,点C,D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,PA,PB的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面.设点P的移动时间为t(秒),两个圆锥的底面面积之和为S,则S关于t的函数图像大致是【 】

如图,在矩形ABCD中,线段EF,GH分别平行于AD,AB,它们相交于点P,点P1,P2分别在线段PF,PH上,PP1=PG,PP2=PE,连接P1 H,P2 F,P1 H与P2 F交于点Q.已知AG:GD=AE:EB=1:2,设AG=a,AE=b. (1)四边形EBHP的面积______四边形GPFD的面积(填“>”、“=”或“<”);(2)求证:△P1 FQ∼△P2 HQ;(3)设四边形PP1 QP2的面积为S1,四边形CFQH的面积为S2,求S1/S2 的值.

如图,已知在矩形ABCD中AB=1,BC=√3,点P是AD边上的一个动点,连结BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是【 】