设矩阵A=的秩为2.
(1)求a的值.
(2)求A的列向量组的一个极大线性无关组α,β,并求矩阵H,使得A=GH,其中G=(α,β).
证明:秩等于r的矩阵可以表示为r个秩等于1的矩阵之和,但不能表示为少于r个秩等于1的矩阵之和.
设A是n阶满秩矩阵,证明:存在正交矩阵P1,P2使得P1-1AP2=其中λi>0(i=1,2,⋯,n).
设A为4阶矩阵,A*为A的伴随矩阵,若A(A-A*)=0,且A≠A*,则r(A)取值为【 】
设A是秩为2的3阶矩阵,α是满足Aα=0的非零向量,若对满足βTα=0的3维向量β均有Aβ=β,则【 】
设A为n阶复方阵,0为A的最小多项式m(λ)的r重根,r≥2为正整数.证明:(1)对任意的正整数k≥r,r(Ak )=r(Ar).(2) r(Ar )<r(Ar-1).
设A,B都是n(n≥2)阶复方阵,则rank(AB)=rank(BA).
设α1,α2,…,αr是n维向量.令β1=α2+α3+⋯+αr,β2=α1+α3+⋯+αr,…,βr=α1+α2+⋯+αr-1.证明向量组β1,β2,…,βr与向量组α1,α2,…,αr有相同的秩.
已知同维数的两个向量组有相同的秩,且其中之一可用另外一个线性表示,证明:这两个向量组等价。
设向量组A:α1,α2,… ,αs可以由向量组B:β1,β2,… ,βt线性表示且R(A)=R(B).证明向量组A与向量组B等价.
设xoy在平面上n个结点Mi(xi,yi ),i=1,2,…,n(n≥3).证明:M1,M2,…,Mn在同一条直线上⟺R=2.
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩是______.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
设α1=,α2=,α3=,则三条直线a1 x+b1 y+c1=0,a2 x+b2 y+c2=0,a3 x+b3 y+c3=0,(其中ai2+bi2≠0,i=1,2,3)相交于一点的充要条件是【 】
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0,证明向量组α,Aα,…,Ak-1α是线性无关的.