题吧,智能辅助学习中心

单项选择(数学·2023年·管理综合

曾几何时,“免费服务”是互联网的重要特征之一,如今这一情况正在发生改变,有些人在网上开辟知识付费平台,让寻求知识和学习知识的读者为阅读“买单”,这改变了人们通过互联网免费阅读的习惯。近年来,互联网知识付费市场的规模正以连年翻番的速度增长,但是有专家指出,知识付费市场的发展不可能长久,因为人们大多不愿为网络阅读付费。

以下哪项如果为真,最能质疑上述专家观点?

A、高强度的生活节奏使人们长时间,系统性阅读纸质文本,见缝插针,随时呈现式的碎片化网络化阅读已成为获取知识的常态。

B、日常工作的劳累和焦虑使人们更喜欢在业余时间玩网络游戏,看有趣的视频,或与好友进行微信聊天。

C、日益增长的竞争压力促使当代人不断学习新知识,只要知识付费平台做的足够好,他们就愿意为此付费。

D、当前网上知识付费平台竞争激烈,尽管内容丰富,形式多样,但鱼龙混杂,缺少规范,一些年轻人沉酒其中难以自拔。

E、当前,许多图书资料在互联网上均能免费获得,只要合理利用于自身的学习和研究一般不会产生知识产权问题。

解答提示

C

若 z = 1 +i,则|z2 −2z| =【】

埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】

已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。

某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位: °C) 的关系, 在 20 个不同的温度条件下进行种子发芽实验, 由实验数据 (xi, yi) (i = 1, 2, · · · , 20) 得到下面的散点图:由此散点图, 在 10°C 至 40°C 之间, 下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型的是【 】。

函数 f(x) = x4 − 2x3 的图像在点 (1, f(1)) 处的切线方程为【 】。

设函数 f(x) = cos (ωx + π/6 ) 在 [−π, π] 的图像大致如下图, 则 f(x) 的最小正周期为【 】。

已知 α ∈ (0, π), 且 3cos2α − 8cosα = 5, 则 sinα =【 】

已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】

已知 ⊙M : x2 + y2 − 2x − 2y − 2 = 0,直线 l : 2x + y + 2 = 0, P 为 l 上的动点. 过点 P 作 ⊙M 的切线PA, PB, 切点为 A, B, 当 |PM| · |AB| 最小时, 直线 AB 的方程为【 】

若 2a + log2a = 4b + 2log4b, 则【 】

设有下列四个命题:p1 : 两两相交且不过同一点的三条直线必在同一平面内.p2 : 过空间中任意三点有且仅有一个平面.p3 : 若空间两条直线不相交, 则这两条直线平行.p4 : 若直线 l ⊂ 平面 α, 直线 m ⊥ 平面 α, 则 m ⊥ l.则下列命题中所有真命题的序号是.① p1 ∧ p4 ② p1 ∧ p2 ③ ¬p2 ∨ p3 ④ ¬p3 ∨ ¬p4

已知函数 f(x) = sinx + 1/sinx, 则【 】① f(x) 的图像关于 y 轴对称;② f(x) 的图像关于原点对称;③ f(x) 的图像关于直线 x = π/2对称; ④ f(x) 的最小值为 2.其中所有真命题的序号是.

已知 α, β ∈ R, 则“存在 k ∈ Z 使得 α = kπ + (−1)kβ”是“sin α = sin β”的【 】

设 a ∈ R, 则“a > 1”是“a2 > a”的【 】

命题 p : 存在 a≠ 0, 对于任意的 x, 使 f(x + a) < f(x) + f(a); 命题 q1 : f(x) 为单调递减函数且 f(x) > 0恒成立; 命题 q2 : f(x) 为单调递增函数且存在 x0 < 0, 使 f(x0) = 0. 则下列说法正确的是【 】

已知空间中不过同一点的三条直线 l, m, n, 则“l, m, n 在同一个平面”是“l, m, n 两两相交”的【 】

设集合 S, T , S ⊆ N∗, T ⊆ N∗, S, T 中至少有两个元素, 且 S, T 满足:① 对于任意 x, y ∈ S, 若 x≠ y, 都有 xy ∈ T ;② 对于任意 x, y ∈ T , 若 x < y, 则 y/x∈ S. 下列命题正确的是【 】

A:四边形ABCD为平行四边形.B:四边形ABCD为矩形.则A是B的条件.

A:a=3;B:|a|=3,则A是B的条件.

A:θ=150°;B:sinθ=1/2,则A是B的条件.