时时刻刻总在追求幸福的人不一定能获得最大的幸福,刘某说自己获得了最大的幸福,所以,刘某从来不曾追求幸福。
以下哪项与上述论证方式最为相似?
A、年年岁岁总是帮助他人的人不一定能成为名人,李某说自己成了名人,所以,李某从来不曾帮助他人。
B、口口声声不断说喜欢你的人不一定最喜欢你,陈某现在说他最喜欢你,所以,陈某过去从未喜欢过你。
C、冷冷清清空无一人的商场不一定没有利润,某商场今年亏损,所以,该商场总是空无一人。
D、日日夜夜一直想躲避死亡的士兵反而最容易在战场上丧命,林某在一次战斗中重伤不治,所以,林某从来没有躲避死亡。
E、分分秒秒每天抢时间工作的人不一定是普通人,宋某看起来很普通,所以,宋某肯定没有每天抢时间工作。
埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】
已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。
函数 f(x) = x4 − 2x3 的图像在点 (1, f(1)) 处的切线方程为【 】。
设函数 f(x) = cos (ωx + π/6 ) 在 [−π, π] 的图像大致如下图, 则 f(x) 的最小正周期为【 】。
已知 α ∈ (0, π), 且 3cos2α − 8cosα = 5, 则 sinα =【 】
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】
设集合 A ={x | x2 −4 ⩽ 0},B ={x | 2x + a ⩽ 0}, 且 A∩B ={x |−2 ⩽ x ⩽ 1}, 则 a =【】
已知集合 A = {x | x2 −3x−4 < 0},B = {−4,1,3,5}, 则 A∩B=【 】
已知集合 U = {−2, −1, 0, 1, 2, 3}, A = {−1, 0, 1}, B = {1, 2}, 则 CU (A ∪ B) =【 】
4 名同学到 3 个小区参加垃圾分类宣传活动, 每名同学只去 1 个小区, 每个小区至少安排 1 名学生, 则不同的安排方法有种
已知集合 A = {x| |x| < 3, x ∈ Z}, B = {x| |x| > 1, x ∈ Z}, 则 A ∩ B =【 】
执行如图的程序框图, 若输入 k = 0, a = 0, 则输出的 k 为【 】
已知集合 A = {1, 2, 3, 5, 7, 11}, B = {x | 3 < x < 15}, 则 A ∩ B 中元素的个数为【 】